Tux trifft MSP430-Launchpad
Aus BraLUG-Wiki
Derzeit noch Baustelle...!
Inhaltsverzeichnis |
Warum ein MSP430-Launchpad?
Hardware
MSP430
MSP430-Launchpad
Toolchain
Von TI werden für die MSP430-Serie (und damit auch für das MSP430-Launchpad) diverse Entwicklungsumgebungen empfohlen und angeboten. Diese sind allerdings ausschließlich nur für Windows-Betriebssysteme verfügbar und in den kostenlosen Versionen im Funktionsumfang teilweise stark beschränkt...
Wir wollen uns natürlich auf die Linux-Plattform konzentrieren! Dort ist eine leistungsfähige (und 100% freie) Alternative verfügbar. Folgende Pakete sind Bestandteil vieler Debian-Derivate (z.B. auch Ubuntu):
- binutils-msp430
- gcc-msp430
- gdb-msp430
- msp430-libc
- msp430mcu
- mspdebug
Auf diese Entwicklungsumgebung beziehen sich die nachfolgenden Ausführungen in diesem Beitrag.
Wer von der Arduino-Fraktion kommt, wird vielleicht Gefallen an Energia, als "Arduino-IDE-ähnliche" Toolchain finden...
"Hello World"
In der Folge soll kurz beschrieben werden, wie man ein (einfaches) Programm für einen MSP430-Launchpad übersetzt und auf die MCU überträgt. Weiterhin wird kurz aufgezeigt, wie man mit dem Debugger direkt auf der MCU arbeiten kann.
Das Programm
Das erste Programm ist immer ein "Hello World". Bei einem Mikrocontroller bietet es sich dazu an, ein paar Ausgänge zyklisch ein- und auszuschalten. Hier der entsprechende C-Quelltext, mit dem die beiden, auf dem Launchpad vorhandenen LEDs als Wechselblinker zyklisch angesteuert werden:
#include <msp430.h> #define LED_RED BIT0 // rote LED an PIN0 #define LED_GREEN BIT6 // gruene Led an PIN6 //*************************************** void delay_ms(unsigned int ms){ while(ms--){ __delay_cycles(1000); } } //*************************************** int main(void){ WDTCTL = WDTPW + WDTHOLD; // watchdog ausschalten P1DIR = LED_RED | LED_GREEN; // LED-Pins als Ausgaenge P1OUT = LED_GREEN; // gruene LED ein while(1) { // Enlosschleife P1OUT ^= LED_RED + LED_GREEN; // LEDs toggle delay_ms(500); // 500ms Pause } }
Programm übersetzen und auf MCU übertragen
C-Quelltext übersetzen, wobei der Code für einen MSP430G2452 erzeugt wird:
msp430-gcc -mmcu=msp430g2452 -o blink.elf blink.c
Die Übertragung auf den Mikrocontroller erfolgt mit Hilfe des Kommandozeilen-Tools mspdebug:
> mspdebug rf2500 ... (msdebug) prog blink.elf Erasing... Programming... Writing 186 bytes to e000 [section: .text]... Writing 32 bytes to ffe0 [section: .vectors]... Done, 218 bytes written
Innerhalb der mspdebug-Shell kann das Programm mit dem Befehl run gestartet werden:
(mspdebug) run Running. Press Ctrl+C to interrupt...
Natürlich läuft das Programm auch ohne mspdebug. Dazu beendet man das Tool mit dem Befehl exit.
Da man obige Befehlsfolgen wahrscheinlich nicht immer wieder neu eingeben möchte, hier ein entsprechendes Makefile, in dem alle notwendigen Aktionen zusammengefasst sind:
PROJ=blink CC=msp430-gcc MCU=msp430g2452 CFLAGS=-Os -g -Wall -mmcu=$(MCU) LDFLAGS=-g -mmcu=$(MCU) OBJS=$(PROJ).o all:$(OBJS) $(CC) $(LDFLAGS) -o $(PROJ).elf $(OBJS) msp430-size $(PROJ).elf clean: rm -fr $(PROJ).elf $(OBJS) flash: mspdebug rf2500 'erase' 'load $(PROJ).elf' 'exit'
Debuggen
Debugproxy auf Port 2000 starten:
> mspdebug rf2500 ... (mspdebug) gdb Bound to port 2000. Now waiting for connection...
Kommadozeilen-Debugger starten und mit Debugproxy verbinden:
> msp430-gdb blink.elf ... (gdb) target remote localhost:2000 ... (gdb)
(Anmerkung: Inhalt von z.B. P1OUT ausgeben → print/x __P1OUT)
...oder etwas komfortabler, z.B. mit KDbg:
> kdbg -r localhost:2000 blink.elf
MSP430-Hardware mit Software erforschen
Port-Input
Taste betätigt?
#include <msp430.h> #define LED BIT0 #define BUTTON BIT3 //*************************************** int main(void) { WDTCTL = WDTPW + WDTHOLD; // WatchDog ausschalten P1DIR = LED; // LED-Pin als Ausgang P1DIR &= ~BIT3; // Button als Eingang P1REN |= BUTTON; // Pull-Up-Widerstand einschalten P1OUT &= ~LED; // LED ausschalten while (1) { // Endlosschleife if ((P1IN & BUTTON) == 0) { // Taste gedrueckt? P1OUT |= LED; // ja --> LED an } else { P1OUT &= ~LED; // nein --> LED aus } } }
Ein-/Aus-Schalter mit Entprellung
#include <msp430.h> #define LED BIT0 #define BUTTON BIT3 #define DEBOUNCE_MS 50 //*************************************** void delay_ms(unsigned int ms){ while(ms--){ __delay_cycles(1000); } } //*************************************** char button_pressed(void) { if ((P1IN & BUTTON) == 0) { delay_ms(DEBOUNCE_MS); if ((P1IN & BUTTON) == 0) return 1; } return 0; } //*************************************** int main(void) { char toggle = 0; WDTCTL = WDTPW + WDTHOLD; P1DIR = LED; P1DIR &= ~BIT3; P1REN |= BUTTON; P1OUT &= ~LED; while (1) { if (button_pressed()) { if (!toggle) { P1OUT ^= LED; toggle = 1; } } else { toggle = 0; } } }
Watchdog-/Port-Interrupt
Ein-/Aus-Schalter über Port- und Watchdog-Interrupt
#include <msp430.h> #define LED BIT0 #define BUTTON BIT3 //*************************************** int main(void) { WDTCTL = WDTPW+WDTHOLD; // WatchDog ausschalten P1DIR = LED; // Ausgang P1DIR &= ~BUTTON; // Eingang P1REN |= BUTTON; // Pull-Up ein P1IES |= BUTTON; // Interrupt Port 1 bei Hight --> Low P1IFG &= ~BUTTON; // Interrupt-Flag fuer Button-Pin loeschen P1IE |= BUTTON; // Interrupt fuer Button-Pin einschalten P1OUT &= ~LED; // LED aus _BIS_SR(LPM0_bits+GIE); // Low Power Mode 0 und Interrupts generell ein return 0; } //*************************************** // Interrupt-Routine Port 1 //*************************************** #pragma vector=PORT1_VECTOR __interrupt void PORT1_ISR(void) { static unsigned char toggle = 0; P1IFG &= ~BUTTON; // Interrupt-Flag fuer Button-Pin loeschen P1IE &= ~BUTTON; // Interrupt fuer Button-Pin ausschalten WDTCTL = WDT_MDLY_32; // WatchDog-Timer 32ms starten IFG1 &= ~WDTIFG; // Interrupt-Flag fuer WatchDog loeschen IE1 |= WDTIE; // WatchDog-Interrupt einschalten if (!toggle) { P1OUT ^= LED; // LED umschalten toggle = 1; P1IES &= ~BUTTON; // Interrupt Port 1 bei Low --> Hight } else { toggle = 0; P1IES |= BUTTON; // Interrupt Port 1 bei Hight --> Low } } //*************************************** // Interrupt-Routine Watchdog //*************************************** #pragma vector=WDT_VECTOR __interrupt void WDT_ISR(void) { IE1 &= ~WDTIE; // WatchDog-Interrupt ausschalten IFG1 &= ~WDTIFG; // Interrupt-Flag fuer WatchDog loeschen WDTCTL = WDTPW + WDTHOLD; // WatchDog ausschalten P1IE |= BUTTON; // Interrupt fuer Button-Pin einschalten }
Anmerkung: Bei meinem Lauchpad scheint der Taster ab und zu länger wie 32ms zu prellen und damit verschluckt sich die Logik machmal. Eigentlich ist es also sinnvoller, die Entprellung über einen Timer zu realisieren, den man an die spezifischen Hardwaregegebenheiten anpassen kann.
Timer
Wechselblinker mit Timer
#include <msp430.h> #define LED_RED BIT0 // rote LED an PIN0 #define LED_GREEN BIT6 // gruene Led an PIN6 //*************************************** int main(void) { WDTCTL = WDTPW + WDTHOLD; // WatchDog ausschalten P1DIR = LED_RED | LED_GREEN; // LED-Pins als Ausgaenge P1OUT = LED_GREEN; // gruene LED ein TACTL = TASSEL_2 + MC_2; // Timer A: SMCLCK, Continuous-Mode CCTL0 = CCIE; // Capture-/Compare-Interrupt ein _BIS_SR(LPM0_bits+GIE); // Low Power Mode 0 und Interrupts generell ein return 0; } //*************************************** // Interrupt-Routine TimerA0 //*************************************** #pragma vector=TIMER0_A0_VECTOR __interrupt void Timer_A(void) { static unsigned char counter = 0; counter++; if (!(counter%4)) // Takt noch ein wenig teilen... P1OUT ^= LED_RED + LED_GREEN; // LEDs toggle }
PWM (LED dimmen)
#include <msp430.h> #define LED BIT6; //*************************************** int main(void) { WDTCTL = WDT_MDLY_32; // Watchdog 32ms IE1 |= WDTIE; // Watchdog-Interrupt ein P1DIR |= LED; // LED als Ausgang P1SEL |= LED; // LED angesteuert via PWM (Timer A0) TA0CCR0 = 1000; // PWM-Periode TA0CCR1 = 1; // PWM-Duty-Cycle (initial) TA0CCTL1 = OUTMOD_7; // PWM-Output-Mode (siehe Datenblatt...) TA0CTL = TASSEL_2 + MC_1; // Timer A: SMCLK (1MHz) und CCR0 aufwaerts _BIS_SR(LPM0_bits + GIE); // Low Power Mode 0 und Interrupte ein return 0; } //*************************************** // Interrupt-Routine WatchDog //*************************************** #pragma vector=WDT_VECTOR __interrupt void watchdog_timer(void) { static int direction = 1; TA0CCR1 += direction*20; // PWM-Duty-Cycle neu setzen if( TA0CCR1 > 980 || TA0CCR1 < 20 ) // Richtung umschalten direction = -direction; }
Weiterführende Links
Toolchain & IDEs:
- http://wiki.ubuntuusers.de/MSP430-Toolchain
- http://recursive-labs.com/static/courses/rl100/samples/mspstart.pdf
- http://www.itopen.it/2013/03/01/msp430-energia-on-linux/
- http://launchpadlinux.blogspot.de/2012/10/making-thinks-easier-with-make-and-geany.html
mspdebug:
MSP430-Basics:
- http://processors.wiki.ti.com/index.php/Category:MSP430
- http://dbindner.freeshell.org/msp430/
- http://www.mikrocontroller.net/articles/MSP430_Codebeispiele
- http://homepages.ius.edu/RWISMAN/C335/HTML/msp430Timer.HTM
GDB:
- http://www.cs.umd.edu/~srhuang/teaching/cmsc212/gdb-tutorial-handout.pdf
- http://www.mail-archive.com/mspgcc-users@lists.sourceforge.net/msg10262.html